Home
Class 11
MATHS
Find n when ""^(n-1)P(4): ""^(n)P(5)=1:9...

Find n when `""^(n-1)P_(4): ""^(n)P_(5)=1:9`, then n = …………….

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) such that \[ \frac{{(n-1)P_4}}{{nP_5}} = \frac{1}{9} \] ### Step 1: Write the formula for permutations The formula for permutations is given by: \[ nPr = \frac{n!}{(n-r)!} \] ### Step 2: Apply the formula to the given problem Using the formula, we can express \( (n-1)P_4 \) and \( nP_5 \): \[ (n-1)P_4 = \frac{(n-1)!}{(n-1-4)!} = \frac{(n-1)!}{(n-5)!} \] \[ nP_5 = \frac{n!}{(n-5)!} \] ### Step 3: Substitute these into the ratio Now substituting these into the ratio gives us: \[ \frac{{(n-1)!/(n-5)!}}{{n!/(n-5)!}} = \frac{(n-1)!}{n!} \] ### Step 4: Simplify the expression We can simplify \( \frac{(n-1)!}{n!} \): \[ \frac{(n-1)!}{n!} = \frac{(n-1)!}{n \cdot (n-1)!} = \frac{1}{n} \] ### Step 5: Set up the equation Now we can set up the equation based on the original problem statement: \[ \frac{1}{n} = \frac{1}{9} \] ### Step 6: Solve for \( n \) Cross-multiplying gives: \[ 1 \cdot 9 = 1 \cdot n \implies n = 9 \] Thus, the value of \( n \) is: \[ \boxed{9} \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

"^(n)P_(n)=1

Find n if ""^(n)P_(4)=18 ""^(n-1)P_3

nP_ (4): ^ (n) P_ (5) = 1: 2 then n =

If .^(n+1)P_(5):^(n)P_(5)=3:2 then n is:

Find n if .^(n-)P_(3): .^(n)P_(4) = 1:9 .

if ^(n)P_(5):^(n)P_(3)=2:1, then n

Find 'n' if 2 ""^(5)P_(3)= ""^(n)P_(4)