Home
Class 11
MATHS
If ""^(n)C(10)= ""^(n)C(9), find ""^(n)...

If `""^(n)C_(10)= ""^(n)C_(9)`, find `""^(n)C_(19)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \binom{n}{10} = \binom{n}{9} \) and find \( \binom{n}{19} \), we can follow these steps: ### Step 1: Set up the equation Given the equation \( \binom{n}{10} = \binom{n}{9} \), we can use the definition of combinations: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] Thus, we have: \[ \binom{n}{10} = \frac{n!}{10!(n-10)!} \quad \text{and} \quad \binom{n}{9} = \frac{n!}{9!(n-9)!} \] ### Step 2: Write the equation using factorials Setting the two expressions equal gives: \[ \frac{n!}{10!(n-10)!} = \frac{n!}{9!(n-9)!} \] ### Step 3: Cancel out \( n! \) Since \( n! \) is common on both sides, we can cancel it out (assuming \( n! \neq 0 \)): \[ \frac{1}{10!(n-10)!} = \frac{1}{9!(n-9)!} \] ### Step 4: Cross-multiply Cross-multiplying leads to: \[ 9!(n-9)! = 10!(n-10)! \] ### Step 5: Simplify the factorials We can express \( 10! \) as \( 10 \times 9! \): \[ 9!(n-9)! = 10 \times 9!(n-10)! \] Dividing both sides by \( 9! \) (assuming \( 9! \neq 0 \)): \[ (n-9)! = 10(n-10)! \] ### Step 6: Rewrite \( (n-9)! \) We can express \( (n-9)! \) as: \[ (n-9)(n-10)! = 10(n-10)! \] ### Step 7: Cancel \( (n-10)! \) Assuming \( (n-10)! \neq 0 \), we can cancel it: \[ n-9 = 10 \] ### Step 8: Solve for \( n \) Solving for \( n \): \[ n = 19 \] ### Step 9: Find \( \binom{n}{19} \) Now, we need to find \( \binom{n}{19} \): \[ \binom{19}{19} = 1 \] ### Final Answer Thus, the value of \( \binom{n}{19} \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • MOCK TEST

    MODERN PUBLICATION|Exercise SECTION - D|5 Videos
  • PROBABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos

Similar Questions

Explore conceptually related problems

If ""^(n)C_(7)=""^(n)C_(5) , find ""^(n)C_(4) .

(i) If ""^(n)C_(8)= ""^(n)C_(2) , find ""^(n)C_(2) . (ii) If ""^(n)C_(10)= ""^(n)C_(12) , determine n and hence ""^(n)C_(5) . (iii) If ""^(n)C_(9)= ""^(n)C_(8) , find ""^(n)C_(17) .

If ""^(n)C_(a)= ""^(n)C_(b) ' then find n.

If .^(n)C_(8) = .^(n)C_(2) , find .^(n)C_(2) .

Jdot If^(n)C_(30)=^(n)C_(4), find n

If ""^(2n)C_(1), ""^(2n)C_(2) and ""^(2n)C_(3) are in A.P., find n.

If ^(^^)nC_(9)=^(n)C_(8), find ^(n)C_(17)

If .^(n)C_(r-1)=.^(n)C_(3r) , find r.