Home
Class 12
MATHS
Find the particular solution of the diff...

Find the particular solution of the differential equation :
`(x dy - y dx) y sin (y/x)= (y dx + x dy) x cos. y/x `, given that `y=pi` and `x=3`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the particular solution of the given differential equation: \[ (x \, dy - y \, dx) \, y \sin\left(\frac{y}{x}\right) = (y \, dx + x \, dy) \, x \cos\left(\frac{y}{x}\right) \] given the initial conditions \( y = \pi \) and \( x = 3 \), we will follow these steps: ### Step 1: Rearranging the Equation We start by rearranging the given equation. We can express it as: \[ (x \, dy - y \, dx) \, y \sin\left(\frac{y}{x}\right) - (y \, dx + x \, dy) \, x \cos\left(\frac{y}{x}\right) = 0 \] ### Step 2: Simplifying the Equation Next, we can simplify the equation. Let's multiply out the terms: \[ x \, dy \cdot y \sin\left(\frac{y}{x}\right) - y \, dx \cdot y \sin\left(\frac{y}{x}\right) - y \, dx \cdot x \cos\left(\frac{y}{x}\right) - x \, dy \cdot x \cos\left(\frac{y}{x}\right) = 0 \] ### Step 3: Grouping Terms Now, we group the terms involving \( dy \) and \( dx \): \[ x \, dy \cdot y \sin\left(\frac{y}{x}\right) - x^2 \, dy \cdot \cos\left(\frac{y}{x}\right) = y \, dx \cdot (y \sin\left(\frac{y}{x}\right) + x \cos\left(\frac{y}{x}\right)) \] ### Step 4: Dividing by \( dx \) To isolate \( \frac{dy}{dx} \), we can divide through by \( dx \): \[ \frac{dy}{dx} \cdot \left( y \sin\left(\frac{y}{x}\right) - x \cos\left(\frac{y}{x}\right) \right) = y \cdot \left( y \sin\left(\frac{y}{x}\right) + x \cos\left(\frac{y}{x}\right) \right) \] ### Step 5: Solving for \( \frac{dy}{dx} \) Now, we can express \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{y \left( y \sin\left(\frac{y}{x}\right) + x \cos\left(\frac{y}{x}\right) \right)}{y \sin\left(\frac{y}{x}\right) - x \cos\left(\frac{y}{x}\right)} \] ### Step 6: Substituting Initial Conditions Now we substitute the initial conditions \( y = \pi \) and \( x = 3 \): \[ \frac{dy}{dx} = \frac{\pi \left( \pi \sin\left(\frac{\pi}{3}\right) + 3 \cos\left(\frac{\pi}{3}\right) \right)}{\pi \sin\left(\frac{\pi}{3}\right) - 3 \cos\left(\frac{\pi}{3}\right)} \] ### Step 7: Calculating Values Calculating the trigonometric values: \[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}, \quad \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] Substituting these values in: \[ \frac{dy}{dx} = \frac{\pi \left( \pi \cdot \frac{\sqrt{3}}{2} + 3 \cdot \frac{1}{2} \right)}{\pi \cdot \frac{\sqrt{3}}{2} - 3 \cdot \frac{1}{2}} \] ### Step 8: Simplifying the Expression Now we simplify the numerator and denominator: Numerator: \[ \pi \left( \frac{\pi \sqrt{3}}{2} + \frac{3}{2} \right) = \frac{\pi^2 \sqrt{3}}{2} + \frac{3\pi}{2} \] Denominator: \[ \frac{\pi \sqrt{3}}{2} - \frac{3}{2} = \frac{\pi \sqrt{3} - 3}{2} \] Thus, we have: \[ \frac{dy}{dx} = \frac{\frac{\pi^2 \sqrt{3}}{2} + \frac{3\pi}{2}}{\frac{\pi \sqrt{3} - 3}{2}} = \frac{\pi^2 \sqrt{3} + 3\pi}{\pi \sqrt{3} - 3} \] ### Conclusion The particular solution of the differential equation given the conditions \( y = \pi \) and \( x = 3 \) is: \[ \frac{dy}{dx} = \frac{\pi^2 \sqrt{3} + 3\pi}{\pi \sqrt{3} - 3} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise EXERCISE 9 (i) Short Answer Type Questions|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise EXERCISE 9 (i) Long Answer Type Questions (I)|53 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise EXERCISE 9 (g) Long Answer Type Questions (I)|14 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos

Similar Questions

Explore conceptually related problems

Solve the following differential equations (x dy -y dx)y sin (y/x)= (y dx + x dy)x cos (y/x) .

The solution of the differential equation (dy)/(dx) +y/x = sin x is

Solution of the differential equation cos x cos y dy -sin x sin y dx=0 is

The solution of the differential equation ( dy ) /( dx) +y/x = cos x is :

Find the particular4solution of the differential equation (x-y)(dy)/(dx)=x+2y, given that when x=1,y=0

Solution of the differential equation sin x. cos y dy + cos x. sin y dx = 0 is

Solution of the differential equation (dy)/(dx)=(x-y)/(x+y) is

MODERN PUBLICATION-DIFFERENTIAL EQUATIONS-EXERCISE 9 (h) Long Answer Type Questions (I)
  1. Solve the following differential equations : (x+y)dy+(x-y)dx=0, g...

    Text Solution

    |

  2. Solve the following differential equations : x^(2)dy=(2xy+y^(2))dx,...

    Text Solution

    |

  3. Solve : x (dy)/(dx)-y=sqrt(x^(2)+y^(2)), x!=0

    Text Solution

    |

  4. Solve x\ dy-y\ dx=sqrt(x^2+y^2)dx

    Text Solution

    |

  5. x(dy)/(dx)-y+xsiny/x=0

    Text Solution

    |

  6. (xcosy/x)(dy)/(dx)=(ycosy/x)+x

    Text Solution

    |

  7. Show that the following differential equations are homogeneous and sol...

    Text Solution

    |

  8. Show that the given differential equation is homogeneous and solve ea...

    Text Solution

    |

  9. Solve the following differential equations (x dy -y dx)y sin (y/x)= ...

    Text Solution

    |

  10. Find the particular solution of eh differential equation (dy)/(dx)=...

    Text Solution

    |

  11. Find the particular solution of the differential equation {xsin^(2)y/x...

    Text Solution

    |

  12. Find the particular solution of the differential equation x(dy)/(dx)=y...

    Text Solution

    |

  13. Show that the differential equation x(dy)/(dx)sin(y/x)+x-ysin(y/x)=0 i...

    Text Solution

    |

  14. Find the particular solution of the differential equation (xe^(y//x)+y...

    Text Solution

    |

  15. Show that the differential equation 2y e^(x/y)dx+(y-2x e^(x/y))dy=0 i...

    Text Solution

    |

  16. Find the particular solution of the differential equation : (x dy - ...

    Text Solution

    |

  17. (dy)/(dx)=(y)/(x)+tan((y)/(x))

    Text Solution

    |

  18. Solve: x (dy)/(dx)- y-x tan . (y/x). = 0

    Text Solution

    |

  19. Show that the family of curves for which the slope of the tangent a...

    Text Solution

    |

  20. Show that the family of curves for which the slope of the tangent a...

    Text Solution

    |