Home
Class 12
MATHS
Find the particular solution of the diff...

Find the particular solution of the differential equation :
`(1+x^(2))(dy)/(dx)=e^(m tan^(-1)x)-y`, given that `y=1` when `x=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the particular solution of the differential equation \[ (1+x^2) \frac{dy}{dx} = e^{m \tan^{-1} x} - y \] given that \( y = 1 \) when \( x = 0 \), we will follow these steps: ### Step 1: Rearranging the Equation First, we can rearrange the differential equation into standard linear form: \[ \frac{dy}{dx} + \frac{y}{1+x^2} = \frac{e^{m \tan^{-1} x}}{1+x^2} \] ### Step 2: Identifying \( p(x) \) and \( q(x) \) From the standard form \( \frac{dy}{dx} + p(x)y = q(x) \), we identify: - \( p(x) = \frac{1}{1+x^2} \) - \( q(x) = \frac{e^{m \tan^{-1} x}}{1+x^2} \) ### Step 3: Finding the Integrating Factor The integrating factor \( \mu(x) \) is given by: \[ \mu(x) = e^{\int p(x) \, dx} = e^{\int \frac{1}{1+x^2} \, dx} = e^{\tan^{-1} x} \] ### Step 4: Multiplying the Equation by the Integrating Factor We multiply the entire differential equation by the integrating factor: \[ e^{\tan^{-1} x} \frac{dy}{dx} + e^{\tan^{-1} x} \frac{y}{1+x^2} = e^{\tan^{-1} x} \cdot \frac{e^{m \tan^{-1} x}}{1+x^2} \] This simplifies to: \[ \frac{d}{dx} \left( y e^{\tan^{-1} x} \right) = \frac{e^{(m+1) \tan^{-1} x}}{1+x^2} \] ### Step 5: Integrating Both Sides Now we integrate both sides: \[ \int \frac{d}{dx} \left( y e^{\tan^{-1} x} \right) \, dx = \int \frac{e^{(m+1) \tan^{-1} x}}{1+x^2} \, dx \] The left side becomes: \[ y e^{\tan^{-1} x} = \int \frac{e^{(m+1) \tan^{-1} x}}{1+x^2} \, dx + C \] ### Step 6: Solving the Integral on the Right Side Let \( t = \tan^{-1} x \), then \( dt = \frac{1}{1+x^2} \, dx \). The integral becomes: \[ \int e^{(m+1)t} \, dt = \frac{1}{m+1} e^{(m+1)t} + C \] Substituting back, we have: \[ y e^{\tan^{-1} x} = \frac{1}{m+1} e^{(m+1) \tan^{-1} x} + C \] ### Step 7: Solving for \( y \) Thus, we can express \( y \) as: \[ y = \frac{1}{m+1} + C e^{-\tan^{-1} x} \] ### Step 8: Applying Initial Condition Using the initial condition \( y(0) = 1 \): \[ 1 = \frac{1}{m+1} + C e^{0} \] This simplifies to: \[ 1 = \frac{1}{m+1} + C \] From this, we find: \[ C = 1 - \frac{1}{m+1} = \frac{m}{m+1} \] ### Final Solution Substituting \( C \) back into the equation for \( y \): \[ y = \frac{1}{m+1} + \frac{m}{m+1} e^{-\tan^{-1} x} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise EXERCISE 9 (j) Long Answer Type Questions (I)|11 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise Objective Type Questions (A. Multiple Choice Questions) ( Questions from NCERT Textbook:)|16 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise EXERCISE 9 (i) Long Answer Type Questions (I)|53 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos

Similar Questions

Explore conceptually related problems

The solution of the differential equation (1+x^(2))(dy)/(dx)+y=e^(tan^(-1)x) is :

The solution of differential equation (1+x^(2)) (dy)/(dx) + y = e^(tan^(-1)x)

Find the particular solution of the differential equation (1 - x ^(2) ) (dy)/(dx) - xy = x ^(2) , given that y = 2 when x = 0 .

Find the particular solution of the differential equation :x(x^(2)-1)(dy)/(dx)=1;y=0; when x=2

Solution of the differential equation (x-y)(1-(dy)/(dx))=e^(x) is

Find the particular solution of the differential equation (1+x^(2))(dy)/(dx)+2xy=(1)/(1+x^(2)) given that y=0 when x=1

Find the particular solution of the following differential equation: (dy)/(dx)=1+x^(2)+y^(2)+x^(2)y^(2), given that y=1 when x=0.

Find the particular solution of the differential equation x(x^(2)-a)(dy)/(dx)=1;quad y=0 when x=2

Find the general solution of the following differential equations (1+x^(2))(dy)/(dx)+y=tan^(-1)x

Find the particular solution of the differential equation x(x^(2)-1)(dy)/(dx) =1, it being given that y = 0 when x = 2.