Home
Class 12
MATHS
Which of the following differential equ...

Which of the following differential equations has y = x as one of its particular solution?(A) `(d^2y)/(dx^2)-x^2(dy)/(dx)+x y=x` (B) `(d^2y)/(dx^2)+x(dy)/(dx)+x y=x` (C) `(d^2y)/(dx^2)-x^2(dy)/(dx)+x y=0` (D) `(d^2y)/(dx^2)+x(dy)/(dx)+x y=0

A

`(d^(2)y)/(dx^(2))-x^(2) (dy)/(dx)+xy=x`

B

`(d^(2)y)/(dx^(2))+x(dy)/(dx)+xy=x`

C

`(d^(2)y)/(dx^(2))-x^(2)(dy)/(dx)+xy=0`

D

`(d^(2)y)/(dx^(2))+x(dy)/(dx)+xy=0`.

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise NCERT - FILE (Questions from NCERT Book) (Exercise 9.4)|23 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise NCERT - FILE (Questions from NCERT Book) (Exercise 9.5)|16 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise NCERT - FILE (Questions from NCERT Book) (Exercise 9.2)|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos

Similar Questions

Explore conceptually related problems

Which of the following differential equations has y=x as one of its particular solution? (A) (d^(2)y)/(dx^(2))-x^(2)(dy)/(dx)+xy=x(d^(2)y)/(dx^(2))+x(dy)/(dx)+xy=0(d^(2)y)/(dx^(2))+x(dy)/(dx)+xy=0

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0

Form the differential equation by eliminating A,B from y=e^(5x) (Ax+B) is (A) (d^(2)y)/dx^(2) +10(dy /dx) +25y=0 (B) (d^(2)y) /dx^(2) -10(dy /dx)+25y=0 (C) (d^(2)y) /dx^(2) +10(dy /dx) -25y=0 (D) (d^(2)y) /dx^(2) -10(dy /dx) -25y=0

If y= x^(2) e^(x) ,then ( d^(2)y)/(dx^(2)) -(dy)/(dx) =

If y=x log((x)/(a+bx)), thenx ^(3)(d^(2)y)/(dx^(2))= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^(2)y(dy)/(dx)-x(d)(y(dy)/(dx)-x)^(2)

In which of the following differential equation degree is not defined? (a)(d^2y)/(dx^2)+3(dy/dx)^2=xlog((d^2y)/(dx^2)) (b)((d^2y)/(dx^2))^2+(dy/dx)^2=xsin((d^2y)/(dx^2)) (c)x=sin((dy/dx)-2y),|x|<1 (d)x-2y=log(dy/dx)

If x=log pandy=(1)/(p), then (a) (d^(2)y)/(dx^(2))-2p=0 (b) (d^(2)y)/(dx^(2))+y=0 (c) (d^(2)y)/(dx^(2))+(dy)/(dx)=0( d) (d^(2)y)/(dx^(2))-(dy)/(dx)=0

If y=x^(x) ,then xy (d^(2)y)/(dx^(2))-x((dy)/(dx) )^(2)=

The order of the differential equation 2x^2(d^2y)/(dx^2)-3(dy)/(dx)+y=0 is

If y=a+(b)/(x) ; prove that x(d^(2)y)/(dx^(2))+2(dy)/(dx)=0