Home
Class 12
MATHS
Consider the two curves C(1):y^(2)=4x,C(...

Consider the two curves `C_(1):y^(2)=4x,C_(2):x^(2)+y^(2)-6x+1=0` then

A

`C_(1)` and `C_(2)` touch each other only at one point

B

`C_(1)` and `C_(2)` touch each other only at two point

C

`C_(1)` and `C_(2)` intersect at exactly two points

D

`C_(1)` and `C_(2)` neither intersect nor touch each other

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    MODERN PUBLICATION|Exercise LATEST QUESTION FROM AIEEE/JEE EXAMINATIONS|5 Videos
  • PARABOLA

    MODERN PUBLICATION|Exercise RECENT COMPETITION QUESTION (QUESTION FROM KARNATAKA CET & COMED)|9 Videos
  • PARABOLA

    MODERN PUBLICATION|Exercise RECENT COMPETITION QUESTION (QUESTION FROM KARNATAKA CET & COMED)|9 Videos
  • MOCK TEST PAPER -IV

    MODERN PUBLICATION|Exercise SELECT THE CORRECT ANSWER|60 Videos
  • PERMUTATIONS AND COMBINATIONS

    MODERN PUBLICATION|Exercise Recent Competitive Questions|6 Videos

Similar Questions

Explore conceptually related problems

The two curves y^(2) = 4x and x^(2)+y^(2)-6x +1 =0 at the point (1,2)

If sin^(-1) a is the acture angle between the curves x^(2) + y^(2) =4x and x^(2) + y^(2) = 8 at (2,2), then a=

The two curves x^(3) - 3xy^(2) +2 = 0 and 3x^(2)y-y^(3) = 2

Consider the circleS, x^(2)+(y-1)^(2)=9 (x-1)^(2)+y^(2)=25 . These are such that

The curves 4x^(2) + 9y^(2) = 72 and x^(2) - y^(2) = 5 at (3,2)

The two curves x^(3) - 3xy^(2) + 2 = 0 and 3x^2y - y^(3) = 2

The number of common tangents to the circles x^(2) + y^(2) = 4 and x^(2) +y^(2) - 6x - 8y -24 =0 is,

The lines joining the origin to the point of intersection of the curves x^(2)+y^(2)+2gx+c=0 and x^(2)+y^(2)+2fy-c=0 are at right angles if

Show that the circles x^(2)+y^(2)-6x+4y+4=0and x^(2)+y^(2)+x+4y+1=0 cut orthogonally.

Prove that the radii of the circles x^(2)+y^(2)=1,x^(2)+y^(2)-2x-6y=6andx^(2)+y^(2)-4x-12y=9 are in AP.

MODERN PUBLICATION-PARABOLA -MULTIPLE CHOICE QUESTION (LEVEL II)
  1. Angle substended by the latus rectum at the origin is

    Text Solution

    |

  2. A ray of light moving parallel to x axis gets reflected from a parab...

    Text Solution

    |

  3. Range of values of k for which the point (k-1) is exteriro to both ...

    Text Solution

    |

  4. If PQ is a focal chord of the parbola y^(2)=4ax with focus at s th...

    Text Solution

    |

  5. The point (a,2a) is an interior point of the region bounded by the ...

    Text Solution

    |

  6. Locus of the middle points of parallel chords of a parabola x^(2)=4a...

    Text Solution

    |

  7. The tangent to a parabola at the vertex A and any point P meet at Q ...

    Text Solution

    |

  8. The tangents at three points A,B,C on the parabola y^(2)=4x taken in ...

    Text Solution

    |

  9. AB is a chord of a parabola y^(2)=4ax with the end A at the vertex ...

    Text Solution

    |

  10. The point of intersection of the tangents to the parabla y^(2)=4x at ...

    Text Solution

    |

  11. If the tangents at (x(1),y(1)) and (x(2),y(2)) to the parabola y^(2)=4...

    Text Solution

    |

  12. If b and c are the length of the segments of any focal chord of a para...

    Text Solution

    |

  13. If the focus of a parabola divides a focal chord of the parabola in s...

    Text Solution

    |

  14. Equation of the common tangent touching the circle (x-3)^(2)+y^(2)=9 ...

    Text Solution

    |

  15. The locus of the mid point of the line segment joining the focus to a...

    Text Solution

    |

  16. A tangent is drawn to the parabola y=x^(2)+6 at the point (1,7) whi...

    Text Solution

    |

  17. The locus of the vertices of the family of parabolas y=(a^(3)x^(2))/(3...

    Text Solution

    |

  18. The axis of a parabola is along the line y=x and the distance of its ...

    Text Solution

    |

  19. Three normals are dran to a parabola y^(2)=4ax from a given point (x...

    Text Solution

    |

  20. Consider the two curves C(1):y^(2)=4x,C(2):x^(2)+y^(2)-6x+1=0 then

    Text Solution

    |