Home
Class 12
MATHS
Let the vectors vecu, vecv and vecw be c...

Let the vectors `vecu, vecv and vecw` be coplanar. Then `vecu. (vec v xx vecw)` is :

A

0

B

`vec0`

C

a unit vector

D

None of these.

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Multiple Choice Question (Level-II)|38 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|16 Videos
  • UNIT TEST PAPER NO.3

    MODERN PUBLICATION|Exercise ASSERTION-REASON & COLUMN MATCHING TYPE QUESTIONS (SECTION-B COLUMN MATCHING TYPE QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

If the vectors vec(a), vec(b) and vec(c ) are coplanar, prove that the vectors vec(a) + vec(b), vec(b) + vec(c ) and vec(c )+vec(a) are also coplanar.

If vec a, vec b and vec c are non coplanar then vec a . { (vec b xx vec c)/(3vec b . (vec c xx vec a))}- vec b . {(vec c xx veca)/(2vecc. (veca xx vec b))} =

Statement 1: Let vec a , vec b , vec ca n d vec d be the position vectors of four points A ,B ,Ca n dD and 3 vec a-2 vec b+5 vec c-6 vec d=0. Then points A ,B ,C ,a n dD are coplanar. Statement 2: Three non-zero, linearly dependent coinitial vector ( vec P Q , vec P Ra n d vec P S) are coplanar. Then vec P Q=lambda vec P R+mu vec P S ,w h e r elambdaa n dmu are scalars.

If theta is the angle between the vectors vec a and vec b then (|vec a xx vec b|)/(|vec a . vec b|) =

If theta is the angle between any two vector vec a and vec b , then |vec a . vec b| = |vec a xx vec b| when theta is equal to

If vecu, vecv and vecw are three non-coplanar vectors, then : (vecu + vecc- vecw). (vecu - vecv) xx (vecv-vecw) equals :

If vec a, vec b and vec c are non coplanar unit vectors such that vec a xx (vec b xx vec c) = (vec b + vec c)/sqrt2 , then

Let vec a and vec b be two non collinear unit vectors. If vec u = vec a - (vec a . vec b) vec b and vec nu = vec a xx vec b , then |vec nu| =