Home
Class 12
MATHS
If veca and vecb are position vectors of...

If `veca and vecb` are position vectors of A and B respectively, then the position vector of a point C in AB produced such ahat `vec(AC) = vec(3AB)` is :

A

`vec3 a- vecb`

B

`vec(3b) - veca`

C

`vec3 a - vec2b`

D

`vec3b- vec2a. `

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Multiple Choice Question (Level-II)|38 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise LATEST QUESTIONS FROM AIEEE/JEE EXAMINATIONS|16 Videos
  • UNIT TEST PAPER NO.3

    MODERN PUBLICATION|Exercise ASSERTION-REASON & COLUMN MATCHING TYPE QUESTIONS (SECTION-B COLUMN MATCHING TYPE QUESTIONS)|4 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are position vectors of the points A and B respectively, then position vector of a point C in AB produced such that AC = 3AB is :

If a and b are position vector of two points A,B and C divides AB in ratio 2:1, then position vector of C is

If position vector of points A,B and C are respectively hati,hatj, and hatk and AB=CX , then position vector of point X is

If the position vectors of A and B are 3i-2j+k and 2i+4j+3k then |vec AB| =

Let A and B be points with position vectors veca and vecb with respect to origin O . If the point C on OA is such that 2vec(AC)=vec(CO), vec(CD) is parallel to vec(OB) and |vec(CD)|=3|vec(OB)| then vec(AD) is

If the position vectors of the points A and B respectively are i+2j-3k and j-k find the direction cosines of AB

If the position vectors of A and B respectively hati+3hatj-7hatk and 5 hati-2hatj+4hatk , then find vec(AB)

The position vectors of A and B are hati-hatj+2hatk and 3hati-hatj+3hatk . The position vector of the middle points of the line AB is