Home
Class 12
MATHS
त्रिभुज ABC का केन्द्रक G है, तो सिद्ध क...

त्रिभुज ABC का केन्द्रक G है, तो सिद्ध कीजिये कि
`vec(GA)+vec(GB)+vec(GC)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

G is the centroid of a triangle ABC, show that : vec(GA)+vec(GB)+vec(GC)=vec0 .

If A,B and C are the vertices of a triangle with position vectors vec(a) , vec(b) and vec(c ) respectively and G is the centroid of Delta ABC , then vec( GA) + vec( GB ) + vec( GC ) is equal to

If A, B, C are vertices of a triangle whose position vectors are vec a, vec b and vec c respectively and G is the centroid of Delta ABC, " then " vec(GA) + vec(GB) + vec(GC), is

If A,B and C are the vertices of a triangle with position vectors vec(a) , vec(b) and vec(c ) respectively and G is the centroid of Delta ABC , then vec( GA) + vec( GB ) + vec( GC ) is equal to

If G is the centroid of Delta ABC then vec(G)A + vec(G)B + vec(G)C =

If G is the centroid of a triangle ABC, prove that vec(GA)+vec(GB)+vec(GC)=vec(0) .

If G is the centroid of a triangle ABC, prove that vec(GA)+vec(GB)+vec(GC) = 0

If G is the centroid of Delta ABC, G' is the centroid of Delta A' B' C' then vec(A)A' + vec(B)B' + vec(C)C' =

In triangle ABC AD, BE, CF are medians. If the area of the triangle DGC is 20cm^2 , then the area of triangle AGF + the area of triangle BGF is equal to: त्रिभुज ABC में, AD, BE और CF मध्यरेखा हैं और G त्रिभुज का केन्द्रक है। यदि त्रिभुज DGC का क्षेत्रफल 20cm^2 है, तो त्रिभुज AGF का क्षेत्रफल+ त्रिभुज BGF का क्षेत्रफल किसके बराबर है: