Home
Class 12
MATHS
If f(x) =(p-x^n)^(1/n) ,p >0 and n is a ...

If `f(x) =(p-x^n)^(1/n)` ,`p >0` and` n` is a positive integer then `f[f(x)]` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(a-x^(n))^(1//n) , where a gt 0 and n is a positive integer, then f[f(x)]=

If f(x) = (p - x^n)^(1/n), p gt 0 and n is positive integer, then the value of f[f(x)]

If f(x) = (a-x^n)^1/n, a gt 0 , n is a postive integer then f[f(x)]=

If f(x)=(a-x^(n))^(1/n),agt0 and n is a positive integer, then prove that f(f(x)) = x.

If f(x)=(a-x^n)^(1/n)," where "a gt0 and n is a positive integer, show that f[f(x)]=x.

if f(x)=(a-x^n)^(1/n), where a > 0 and n is a positive integer, then f(f(x))= (i) x^3 (ii) x^2 (iii) x (iv) -x

if f(x)=(a-x^(n))^((1)/(n)), where a>0 and n is a positive integer,then f(f(x))=(i)x^(3)( ii) x^(2)( iii) x( iv )-x

If f'(x)=(x-a)^(2n)(x-b)^(2p+1) , when n and p are positive integers, then :