Home
Class 12
MATHS
If y^(x)=e^(y-x), then prove that (dy)...

If ` y^(x)=e^(y-x)`, then prove that `(dy)/(dx) = ((1+logy)^(2))/(logy)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(x)=e^(y-x) , then prove that (dy)/(dx)=((1+log y)^(2))/(logy) .

If e^y=y^x , prove that (dy)/(dx)=((logy)^2)/(logy-1)

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)

If x^(y) + y^(x) = a^(b) then prove that (dy)/(dx)=-[(yx^(y-1)+y^(x)Logy)/(x^(y)Logx+xy^(x-1))] .

If x=e^(cos2t) and y=e^(sin2t) , then prove that (dy)/(dx)=(-ylogx)/(x logy) .

If y^x=e^(y-x), prove that dy/dx=(1+logy)^2/logy .

(dy)/(dx)+y/x logy=y/x^2 (logy)^2

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .