Home
Class 11
MATHS
यदि (If) ( tan (A-B))/( tan A ) + (sin^...

यदि (If) `( tan (A-B))/( tan A ) + (sin^(2)C)/( sin^(2)A) =1 ` , तो साबित करें कि `tan A tan B = tan^(2) C `

Promotional Banner

Similar Questions

Explore conceptually related problems

"If" (tan (A-B)/tanA)+(sin^(2)C)/(sin^(2)A) =1, "show that", tanA tanB = tan^(2) C.

(tan A + tan B) / (tan A-tan B) = (sin (A + B)) / (sin (AB))

If (" cos " (A+B))/(" cos " (A-B)) =(" sin " (C+D))/(" sin " (C -D)) , prove that tan A tan B tan C + tan D=0

A + B + C = (pi) / (2) rArr tan A tan B + tan B tan C + tan C tan A =

If ( cos (A+B))/( cos (A-B)) =( sin (C+D))/( sin (C -D)) then prove that tan A tan B tan C + tan D=0 ................. A) 0 B) -1 C) sqrt3 D) 1

If sin B=(sin(2A+B))/(5) then (tan(A+B))/(tan A)=?

If tan^(2) A + tan^(2)B+tan^(2)C -tan B tan c-tan C tan A-tan A tan B=0 then DeltaABC is

1-tan(A)/(2)tan(B)/(2)=(2c)/(a+b+c)

If tan A=(1-cos B)/(sin B), then tan2A=tan B

Tan A + Tan B + Tan C - (sin(A+B+C))/(cosAcosBcosC)=