Home
Class 11
PHYSICS
Two forces vec(F)(1) = - hat(i) + 2 hat...

Two forces ` vec(F)_(1) = - hat(i) + 2 hat(j) - 3hat(k) and vec(F)_(2) = 2hat(i) - 4hat(j) +3hat(k)` act on a body and cause it to displace from point A(3,1,2) to `B (-4,-2,3)` . Calculate the total work done on the particle .

Text Solution

AI Generated Solution

To solve the problem of calculating the total work done on the particle by the two forces, we will follow these steps: ### Step 1: Find the Resultant Force We have two forces given: \[ \vec{F}_1 = -\hat{i} + 2\hat{j} - 3\hat{k} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • WORK, ENERGY AND POWER

    MODERN PUBLICATION|Exercise PRACTICE PROBLEMS|27 Videos
  • WORK, ENERGY AND POWER

    MODERN PUBLICATION|Exercise Conceptual Questions|20 Videos
  • WAVES

    MODERN PUBLICATION|Exercise CHAPTER PRACTICE TEST|14 Videos

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(A)=-2hat(i)+3hat(j)-4hat(k)and vec(B)=3hat(i)-4hat(j)+5hat(k) then vec(A)xxvec(B) is

A particle is acted upon by constant forces vec(F)_(1)=(2hat(i)-3hat(j)+4hat(k)) and vec(F)_(2)=(-hat(i)+2hat(j)-3hat(k)) is displaced from the point A(2,1,0) to the point B(-3,-4,2) . Find the total work done by the forces.

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

If vec(a)=(hat(i)-hat(j)+2hat(k)) and vec(b)=(2hat(i)+3hat(j)-4hat(k)) then |vec(a)xx vec(b)|=?

The torque of a force vec(F)=-2hat(i)+2hat(j)+3hat(k) acting on a point vec(r )=hat(i)-2hat(j)+hat(k) about origin will be

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.

Find the dot product of two vectors vec(A)=3hat(i)+2hat(j)-4hat(k) and vec(B)=2hat(i)-3hat(j)-6hat(k) .

Let vec(A)=2hat(i)-3hat(j)+4hat(k) and vec(B)=4hat(i)+hat(j)+2hat(k) then |vec(A)xx vec(B)| is equal to