Home
Class 10
MATHS
Prove that tan^(-1)(x/y)- tan^(-1)((x-y)...

Prove that `tan^(-1)(x/y)- tan^(-1)((x-y)/(x+y)) ` is ` (pi)/4` and Not `(-3pi)/4` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is (pi)/(4) and Not(-3 pi)/(4)

tan^(-1)x+tan^(-1)y=pi+tan^(-1)((x+y)/(1-xy))

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is (A) pi/2 (B) pi/3 (C) pi/4 (D) pi/4 or (3pi)/4

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is (A) pi/2 (B) pi/3 (C) pi/4 (D) pi/4 or (3pi)/4

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is (A) pi/2 (B) pi/3 (C) pi/4 (D) pi/4 or (3pi)/4

tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to(A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to (A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is equal to (A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

tan^(-1)((x)/(y))-tan^(-1)((x-y)/(x+y)) is (A) (pi)/(2)(B)(pi)/(3)(C)(pi)/(4)(D)(pi)/(4) or 3(pi)/(4) is (A) (pi)/(2)(B)

If tan ^(-1) x-tan ^(-1) y=-(pi)/(4) then