Home
Class 12
MATHS
If In = int0 ^1 x^n e^(-x) dx for n in N...

If `I_n = int_0 ^1 x^n e^(-x) dx` for `n in N`, then `I_7 - I_6 =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n) = int_0^(1) x^(n).e^(-x) dx, AA n in N then I_(7)-7I_(6) =

If I_(n) = int x^(n)e^(x) dx where n inN , then I_(n) + nI_(n-1) =

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

If = int_(0)^(1) x^(n)e^(-x)dx "for" n in N "then" I_(n)-nI_(n-1)=

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

I_(n) = int_0^(pi/4) tan^(n) x dx, n in N , then I_(10)+I_(8) =

If I_(n)=int x^(n)*e^(cx)dx for n le1 then c*I_(n)+n*I_(n-1)=c