Home
Class 12
MATHS
" 72A square matrix P satisfies "P^(2)=I...

" 72A square matrix P satisfies "P^(2)=I-P" ,where "1" is identity matrix.If "P^(n)=5I-8P" ,then "n" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P^(n)=5I-8P , then n is

A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P^(n)=5I-8P , then n is

A square matrix P satisfies P^(2)=I-P where I is identity matrix. If P^(n)=5I-8P , then n is

A square matrix P satisfies P^(2)=I-P , where I is identity matrix. If P^(n)=5I-8P , then n is :

A square matrix P satisfies P^(2)=I-p where I is the identity matrix and p^(x)=5I-8p, then x

A square matrix P satisfies P^(2)=I-2P where I is identity matrix.If P^(2)+P^(3)+P^(4)=a^(2)I-b^(2)P then a^2+b^2=

A square matrix P satisfies P^(2)=I-2P where I is identity matrix. If P^(2)+P^(3)+P^(4)=a^(2)I-b^(2)P ,then

A square matrix M of order 3 satisfies M^(2)=I-M , where I is an identity matrix of order 3. If M^(n)=5I-8M , then n is equal to _______.

A square matrix M of order 3 satisfies M^(2)=I-M , where I is an identity matrix of order 3. If M^(n)=5I-8M , then n is equal to _______.