Home
Class 12
MATHS
L e tI1=int(pi/6)^(pi/3)(sinx)/x dx ,I2=...

`L e tI_1=int_(pi/6)^(pi/3)(sinx)/x dx ,I_2=int_(pi/6)^(pi/3)("sin"(sinx)/(sinx)dx ,I_3=int_(pi/6)^(pi/3)(sin(tanx)/(tanx)dx` Then arrange in the decreasing order in which values `I_1,I_2,I_3` lie.

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(pi/3)^(pi/2) sinx dx

Let I= int_(pi//4)^(pi//3) (sinx)/(x)dx . Then

Let I=int_((pi)/(4))^((pi)/(3))(sinx)/(x)dx . Then

I_(1)=int_(0)^((pi)/2)Ln (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)Ln(sinx+cosx)dx . Then

I_(1)=int_(0)^((pi)/2)In (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)In(sinx+cosx)dx . Then

Let I_(1)=int_((pi)/(6))^((pi)/(3))(sin x)/(x)dx,I_(2)=int_((pi)/(6))^((pi)/(3))(sin(sin x))/(sin x)dx,I_(3)=int_((pi)/(6))^((pi)/(6))(sin(tan x))/(tan x)dxI_(1),I_(2),I_(3) lie.

int_(pi//3)^(pi//2) dx/(sinx+ sin 2x)=