Home
Class 14
MATHS
y=sqrt(a^(2)-x^(2)),x in(-a,a):x+y(dy)/(...

y=sqrt(a^(2)-x^(2)),x in(-a,a):x+y(dy)/(dx)=0,(y!=0)

Promotional Banner

Similar Questions

Explore conceptually related problems

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: y=sqrt(a^(2)-x^(2))x in(-x,a)vdotsx+y(dy)/(dx)=0(y!=0)

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: y=sqrt(a^2-x^2)x in (-x , a) : x+y(dy)/(dx)=0(y!=0)

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation: y=sqrt(a^2-x^2)x in (-x , a) : x+y(dy)/(dx)=0(y!=0)

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation. y =sqrt(a^2-x^2), x in(-a, a): x+y (dy)/(dx)=0(y ne 0)

Verify that the given function (explicit or implicit) is a solution of the correseponding differential equation : y = sqrt(a^2 - x^2), x in (-a,a) : x + y(dy)/(dx) = 0 (y ne 0)

y = sqrt(a^(2) - x^(2)) x ne (-a, a) : x + y (dy)/(dx) = 0(y ne 0)

y = sqrt(a^(2) - x^(2)) x ne (-a, a) : x + y (dy)/(dx) = 0(y ne 0)

y = sqrt(a^(2) - x^(2)) x ne (-a, a) : x + y (dy)/(dx) = 0(y ne 0)

y = sqrt(a^(2) - x^(2)) x ne (-a, a) : x + y (dy)/(dx) = 0(y ne 0)

Verify that the given function (Explicit Or Implicit) is a solution of the corresponding differential equation y = sqrt(a^(2) - x^(2)) x ∈ (-a, a) : x + y (dy)/(dx) = 0(y ne 0)