Home
Class 11
MATHS
The value of (z + 3) (barz + 3) is eq...

The value of ` (z + 3) (barz + 3) ` is equivlent to (A) |z+3|^(2) (B) |z-3| (C) z^2+3 (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (z+3) (barz+3) is equal to (i) |z +3|^(2) (ii) |z-3| (iii) z^(2)+3 (iv) none of these

The value of (z+3)(barz+3) is equivalent to

If z is a non zero complex, number then |(|barz |^2)/(z barz )| is equal to (a). |(barz )/z| (b). |z| (c). |barz| (d). none of these

|z-4| (a) Re(z) > 0 (b) Re(z) (c) Re(z) > 3 (d) None of these

If B: {z: |z-3-4i|}=5 and C={z:Re[(3+4i)z]=0} then the number of elements in the set B intesection C is (A) 0 (B) 1 (C) 2 (D) none of these

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5

If z_1,z_2,z_3 are complex number , such that |z_1|=2, |z_2|=3, |z_3|=4 , the maximum value |z_1-z_2|^(2) + |z_2-z_3|^2 + |z_3-z_1|^2 is : (a) 58 (b) 29 (c) 87 (d) none of these