Home
Class 12
MATHS
If int(f(x))/(log(sinx))dx=log[log sinx]...

If `int(f(x))/(log(sinx))dx=log[log sinx]+c`, then f(x) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int(cotx)/(log(sinx))dx

int(cotx)/(log(sinx))dx

If int(f(x))/(logsinx)dx=log*logsinx, then f(x) is equal to

If int (f(x))/(log (sin x))dx =log [log sin x]+c , then f(x) =

int(cotx)/(log(sinx)dx

int (cotx)/(log(sinx)) dx

If : int(f(x))/(log(cosx))dx=-log[log(cosx)]+c, then : f(x)=

If int (f(x)dx)/(log sin x)= log sin x, then f(x)=....

If int (f(x))/(log cos x) dx = - log(log cos x) + C , then f(x) is equal to a)tan x b) -sin x c) -cos x d) -tan x

int(f'(x))/(f(x)log{f(x)})dx=