Home
Class 11
MATHS
If x sqrt(y+1)+y sqrt(x+1)=0 & x!=y, the...

If `x sqrt(y+1)+y sqrt(x+1)=0 & x!=y, then (dy)/(dx)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+sqrt( xy)+ y=1 ,then (dy)/(dx)=

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

If x sqrt(1+y)+y sqrt(1+x)=0 and x!=y ,then (1+x)^(2)(dy)/(dx)+(3)/(2)=

If y= sqrt (x+(1)/( x) ),then (dy)/(dx) =

If x=sqrt(1-y^2) , then (dy)/(dx)=

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If y= (sqrt( x) +(1)/(sqrt(x)) ) ^(5) , then (dy)/(dx) =

If sqrt(x) + sqrt(y) = sqrt(a) , then (dy)/(dx) = 1/(2sqrt(x)) + 1/(2sqrt(y)) = 1/(2sqrt(a))

If y= sqrt(x-1) +sqrt( x+1) ,then (dy)/(dx)

x sqrt(x)+y sqrt(y)=a sqrt(a) then find (dy)/(dx)