Home
Class 12
MATHS
Let f^(prime)(x)=(192 x^3)/(2+sin^4pix)f...

Let `f^(prime)(x)=(192 x^3)/(2+sin^4pix)fora l lx in Rw i t hf(1/2)=0.Ifmlt=int_(1/2)^1f(x)dxlt=M ,` then the possible values of `ma n dM` are (a)`m=13 ,M=24` (b) `m=1/4,M=1/2` (c)`m=-11 ,M=0` (d) `m=1,M=12`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f'(x)=(192x^3)/(2+sin^4pix) for all x in R with f(1/2)=0.If mleint_(1//2)^1f(x)dxleM , then the possible values of m and M are

Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. If mlt=int_(1/2)^1f(x)dxlt=M then the possible values of m and M are (i) m=13,M= 24 (ii) m=1/4,M=1/2 (iii) m=-11,M = 0 (iv) m=1,M=12

Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. If mlt=int_(1/2)^1f(x)dxlt=M then the possible values of m and M are (i) m=13,M= 24 (ii) m=1/4,M=1/2 (iii) m=-11,M = 0 (iv) m=1,M=12

Let f prime(x)=(192x^3)/(2+sin^4 pix) for all x in RR with f(1/2)=0. If mlt=int_(1/2)^1f(x)dxlt=M then for x in [(1/2),1] the possible values of m and M are

Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x epsilonR with f(1/2)=0 . If mle int_(1//2)^(1)f(x)dxleM , then the possible values of m and M are

Let f'(x)=(192x^(3))/(2+sin^(4)pix) for all x in R with f((1)/(2))=0 . If m le int_((1)/(2))^(1)f(x)dx leM , then the possible values of m and M are-

Let the line 3x+4y=m touches the circle x^(2)+y^(2)-10x=0 .If the possible values of m are m_(1) and m_(2) then ((m_(1)+m_(2)))/(10) is

f(m)<0.f(x)=ax^(2)-bx+c,m lies between the roots and f(m_(1))f(m_(2))<0 ,then one of the roots will lies between m_(1) and m_(2)

Let f(x) = (x^(2) + 4x + 1)/( x^(2) + x + 1), x inR If m le f(x) le M AA x in R , then (1)/(2) (M - m) = _______