Home
Class 12
MATHS
यदि xylog(x+y)=1 हो, तो सिद्ध कीजिए कि- ...

यदि `xylog(x+y)=1` हो, तो सिद्ध कीजिए कि-
`!=(y(x^(2)y+x+y))/(x(xy^(2)+x+y))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))=

If xy log(x + y) = 1 , then prove that (dy)/(dx) = -(y(x^(2)y + x + y))/(x(xy^(2) + x + y)) .

x-x^(2)y+xy^(2)-y

(x)/(x-y)-(y)/(x+y)-(2xy)/(x^(2)-y^(2))

y=sqrt(1+x^(2)) and y'=(xy)/(1+x^(2))

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))

y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))