Home
Class 12
MATHS
The function f(x)=tan^(-1)(sinx+cosx) is...

The function `f(x)=tan^(-1)(sinx+cosx)` is an increasing function in `(-pi/2,pi/4)` (b) `(0,pi/2)` `(-pi/2,pi/2)` (d) `(pi/4,pi/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=tan^(-1)(sin x+cos x) is an increasing function in (-(pi)/(2),(pi)/(4))(b)(0,(pi)/(2))(-(pi)/(2),(pi)/(2))(d)((pi)/(4),(pi)/(2))

The function f(x)""=""t a n^(-1)(sinx""+""cosx) is an increasing function in (1) (pi/4,pi/2) (2) (-pi/2,pi/4) (3) (0,pi/2) (4) (-pi/2,pi/2)

f(x) = tan^-1(sinx+cosx) is strictly decreasing function on (pi/4,pi/2)

The function f(x)=tan^(-1)(sin x+cos x) is an increasing function in (1)((pi)/(4),(pi)/(2))(2)(-(pi)/(2),(pi)/(4))(3)(0,(pi)/(2))(4)(-(pi)/(2),(pi)/(2))^(((pi)/(4)),(pi)/(2))^(((pi)/(4)))(2)

Show that f(x)=sinx is an increasing function on (-pi//2,\ pi//2) .

Show that f(x)=tan^(-1)(sinx+cosx) is decreasing function on the interval (pi/4,pi/2)dot

Show that f(x)=tan^(-1)(sinx+cosx) is a decreasing function on the interval on (pi//4,\ pi//2) .

Prove the following f(x)=tan^(-1)(sinx+cosx) is strictly decreasing function on ((pi)/(4),(pi)/(2)) .

Show that the function f(x)=cot^(-1)(sinx+cosx) is decreasing on (0,\ pi//4) and increasing on (pi//4,\ pi//2) .

The function f(x) = x- cosx , is increasing in....... A) ( pi /2, pi ) B) (0, pi ) C) (0, pi /2) D) All of these