Home
Class 12
MATHS
If xsqrt(1+y)+ysqrt(1+x)=0, then (dy)/(d...

If `xsqrt(1+y)+ysqrt(1+x)=0,` then `(dy)/(dx)` is equal to `1/((1+x)^2)` (b) `-1/((1+x)^2)` `1/((1+x^2))` (d) `1/((1+x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt(1+y)+y sqrt(1+x)=0, then (dy)/(dx) is equal to (1)/((1+x)^(2))(b)-(1)/((1+x)^(2))(1)/((1+x^(2)))(d)(1)/((1+x))

If xsqrt(y)+ysqrt(x)=1"then"(dy)/(dx) equals -

If xsqrt(1 + y) + ysqrt(1 + x) = 0 show that (dy)/(dx) = - 1/(1 + x)^2

If x=ysqrt(1-y^(2)) , then (dy)/(dx)=

If x=ysqrt(1-y^(2)) , then (dy)/(dx)=

If ysqrt(1-x^(2)) +xsqrt( 1-y^(2)) =1,then (dy)/(dx)=