Home
Class 12
MATHS
The point P on the ellipse 4x^2+9y^2=36 ...

The point P on the ellipse `4x^2+9y^2=36` is such that the are of the ` P F_1F_2=sqrt(10)` where `F_1,f_2` are foci. Then P has the coordinates `(3/(sqrt(2)),sqrt(2))` (b) `(3/2,2)` `(-3/2,-2)` (d) `(-3/(sqrt(2))-sqrt(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The point P on the ellipse 4x^2+9y^2=36 is such that the are of the triangle P F_1F_2=sqrt(10) where F_1,f_2 are foci. Then P has the coordinates (3/(sqrt(2)),sqrt(2)) (b) (3/2,2) (-3/2,-2) (d) (-3/(sqrt(2))-sqrt(2))

The point P on the ellipse 4x^2+9y^2=36 is such that the are of the P F_1F_2=sqrt(10) where F_1,f_2 are foci. Then P has the coordinates (a) (3/(sqrt(2)),sqrt(2)) (b) (3/2,2) (-3/2,-2) (d) (-3/(sqrt(2))-sqrt(2))

The point,at shortest distance from the line x+y=10 and lying on the ellipse x^(2)+2y^(2)=6, has coordinates (A) (sqrt(2),sqrt(2)) (B) (0,sqrt(3))(C)(2,1)(D)(sqrt(5),(1)/(sqrt(2)))

If P and Q are two points on the circle x^2 + y^2 - 4x + 6y-3=0 which are farthest and nearest respectively from the point (7, 2) then. (A) P-=(2-2sqrt(2), -3-2sqrt(2)) (B) Q-= (2+2sqrt(2), -3 + 2 sqrt(2)) (C) P-= (2+2sqrt(2), -3 + 2 sqrt(2)) (D) Q-= (2-2sqrt(2), -3 + 2 sqrt(2))

If P and Q are two points on the circle x^2 + y^2 - 4x + 6y-3=0 which are farthest and nearest respectively from the point (7, 2) then. (A) P-=(2-2sqrt(2), -3-2sqrt(2)) (B) Q-= (2+2sqrt(2), -3 + 2 sqrt(2)) (C) P-= (2+2sqrt(2), -3 + 2 sqrt(2)) (D) Q-= (2-2sqrt(2), -3 + 2 sqrt(2))

f(x)=(x-1)|(x-2)(x-3)|dot Then f decreases in (a) (2-1/(sqrt(3)),2) (b) (2,2+1/(sqrt(3))) (c) (2+1/(sqrt(3)),4) (d) (3,oo)

f(x)=(x-1)|(x-2)(x-3)|dot Then f decreases in (a) (2-1/(sqrt(3)),2) (b) (2,2+1/(sqrt(3))) (c) (2+1/(sqrt(3)),4) (d) (3,oo)

f(x)=(x-1)|(x-2)(x-3)|dot Then f decreases in (a) (2-1/(sqrt(3)),2) (b) (2,2+1/(sqrt(3))) (c) (2+1/(sqrt(3)),3) (d) (3,oo)

Points on the curve f(x)=x/(1-x^2) where the tangent is inclined at an angle of pi/4 to the x-axis are (0,0) (b) (sqrt(3),-(sqrt(3))/2) (-2,2/3) (d) (-sqrt(3),(sqrt(3))/2)

Points on the curve f(x)=x/(1-x^2) where the tangent is inclined at an angle of pi/4 to the x-axis are (0,0) (b) (sqrt(3),-(sqrt(3))/2) (-2,2/3) (d) (-sqrt(3),(sqrt(3))/2)