Home
Class 12
MATHS
If 3x^4 - 27x^3 + 36x^2 - 5 = 0 then s1...

If ` 3x^4 - 27x^3 + 36x^2 - 5 = 0` then` s_1 + s_2=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 8x^(4) - 2x^(3) - 27x^(2) + 6x + 9 = 0 then s_(1), s_(2), s_(3) , s_(4) are

If 8x^(4) - 2x^(3) - 27x^(2) + 6x + 9 = 0 then s_(1), s_(2), s_(3) , s_(4) are

If x^(3) - x^(2) + 33x + 5 = 0 then s_(1), s_(2) , s_(3) are

If x^(4) -16x^(3) + 86x^(2) - 17x + 105 = 0 then s_(1), s_(2) , s_(3), s_(4) are

If s_1,s_2,s_3.........s_r are the sum of the products of the roots taken 'r' at a time then for x^5 - x^2 + 4x - 9 = 0 => s_3 +s_4 - s_5 =

Let S_(1) is set of minima and S_(2) is set of maxima for the curve y=9x^(4)+12x^(3)-36x^(2)-25 then ( A) S_(1)={-2,-1},S_(2)={0}(B)S_(1){-2,1},S_(2)={0}(C)S_(1)={-2,1}:S_(2)={-1}(D)S_(1)={-2,2},S_(2)={0}

Find the absolute maximum and absolute minimum of f(x) = 2x^(3) - 3x^(2) - 36x + 2 on the interval [0, 5].