Home
Class 12
MATHS
If g(x)=(1-a^x+x a^xloga)/(x^2*a^x), x<0...

If `g(x)=(1-a^x+x a^xloga)/(x^2*a^x), x<0` `((2a)^x-xlog(2a)-1)/(x^2), x >0` (where a > 0) then find a and `g(0)` so that `g(x)` is continuous at `x=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=(1-a^x+x a^xloga)/(x^2*a^x), x 0 (where a > 0) then find a and g(0) so that g(x) is continuous at x=0.

If g(x)=(1-a^x+x a^xloga)/(x^2*a^x), x 0 (where a > 0) then find a and g(0) so that g(x) is continuous at x=0.

If g(x)=(1-a^x+x a^xloga)/(x^2*a^x), x 0 (where a > 0) then find a and g(0) so that g(x) is continuous at x=0.

Consider the function f(x)={(1-a^x+x a^x ln a)/(a^xx^2); x 0 where a > 0. If g(x) is continuous at x=0 then a=sqrt(2) (b) g(0)=1/8(ln2)^2 a=1/(sqrt(2)) (d) g(0)=1/2ln2

Let f(x) = e^(x)g(x) , g(0)=2 and g (0)=1 , then find f'(0) .

Find f0g and g0f : f(x)=x+1 , g(x)=cosx

If f(x) = {{:(x - 3",",x lt 0),(x^(2) - 3x + 2",",x ge 0):} , then g(x) = f(|x|) is a. g'(0^(+)) = - 3 b. g'(0^(-)) = -3 c. g'(0^(+)) = g'(0^(-)) d. g(x) is not continuous at x = 0

If f'(x)=g(x)(x-a)^(2), where g(a)!=0 and g is continuous at x=a, then :

Find f0g and g0f : f(x) = 2x , g(x)=sinx