Home
Class 12
MATHS
If the equation x^2+px+q=0andx^2+p'x+q'=...

If the equation `x^2+px+q=0`and`x^2+p'x+q'=0` have a common root , prove that , it is either `(pq'-p'q)/(q'-q)`or,`(q'-q)/(p'-p)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If the equation x^(2)+px+q=0 and x^(2)+p'x+q'=0 have a common root show that it must be equal to (pq'-p'q)/(q-q') or (q-q')/(p'-p)

If the equation x^2 + px + q =0 and x^2 + p' x + q' =0 have common roots, show that it must be equal to (pq' - p'q)/(q-q') or (q-q')/(p'-p) .

If x^(2)+px+q=0 and x^(2)+qx+p=0 have a common root, prove that either p=q or 1+p+q=0 .

If x^2+p x+q=0a n dx^2+q x+p=0,(p!=q) have a common roots, show that 1+p+q=0 .

In the equation x^2-px+q=0 ratio of the roots are 2:3 ,then prove that 6p^2=25q

If the equations x^2+p x+q=0 and x^2+p^(prime)x+q^(prime)=0 have a common root, then it must be equal to a. (p^(prime)-p ^(prime) q)/(q-q^(prime)) b. (q-q ')/(p^(prime)-p) c. (p^(prime)-p)/(q-q^(prime)) d. (p q^(prime)-p^(prime) q)/(p-p^(prime))

If the equations x^2+p x+q=0 and x^2+p^(prime)x+q^(prime)=0 have a common root, then it must be equal to a. (p^(prime)-p ^(prime) q)/(q-q^(prime)) b. (q-q ')/(p^(prime)-p) c. (p^(prime)-p)/(q-q^(prime)) d. (p q^(prime)-p^(prime) q)/(p-p^(prime))

In the equation x^2-px+q=0 one root is twice of other then prove that 2p^2=9q

If the equations x^2+p x+q=0a n dx^2+p^(prime)x+q^(prime)=0 have a common root, then it must be equal to a. (p^(prime)-p ^(prime) q)/(q-q^(prime)) b. (q-q ')/(p^(prime)-p) c. (p^(prime)-p)/(q-q^(prime)) d. (p q^(prime)-p^(prime) q)/(p-p^(prime))