Home
Class 14
MATHS
If a+b=2c , then the value of a/(a-c)...

If `a+b=2c` , then the value of `a/(a-c)+b/(b-c)` is `1/2` (b) `1` (c) `2` (d) `3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c =0, then the value of frac(a^2 +b^2+c^2) (a^2 - bc) is (A) 0 (B) 1 (C) 2 (D) 3

If a b+b c+c a=0 , then what is the value of (1/(a^2-b c)+1/(b^2-c a)+1/(c^2-a b)) ? (a) 0 (b) 1 (c) 3 (d) a+b+c

If in A B C ,A C is double of A B , then the value of cot(A/2)cot((B-C)/2) is equal to 1/3 (b) -1/3 (c) 3 (d) 1/2

If in A B C ,A C is double of A B , then the value of cot(A/2)cot((B-C)/2) is equal to 1/3 (b) -1/3 (c) 3 (d) 1/2

If a=bc and c=a-b, then the value of a is b^(2)-1( b )(b^(2))/(b-1) (c) (b)/(b-1) (d) None of these

If a,b and c are the side of a triangle,then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c) is 3 (b) 9(c)6(d)1

If a , b and c are the side of a triangle, then the minimum value of (2a)/(b+c-a)+(2b)/(c+a-b)+(2c)/(a+b-c)i s (a) 3 (b) 9 (c) 6 (d) 1

If a+b+c=0 , find the value of (a^2)/((a^2-b c))+(b^2)/((b^2-c a))+(c^2)/((c^2-a b)) (a) 0 (b) 1 (c) 2 (d) 4

Suppose a ,b, and c are in A.P. and a^2, b^2 and c^2 are in G.P. If a

If in A B C ,A C is double of A B , then the value of (cot(A/2))(cot((B-C)/2)) is equal to 1/3 (b) -1/3 (c) 3 (d) 1/2