Home
Class 10
MATHS
Prove that (cosec theta-cot theta)^2=(1-...

Prove that `(cosec theta-cot theta)^2=(1-cos theta)/(1+cos theta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Prove that ((1+cos theta)/(cos theta))((1-cos theta)/(cos theta))cosec^(2)theta=sec^(2)theta

Prove that (1+cosec theta -cot theta)/(1+cosec theta+cot theta)=(1-cos theta)/sin theta.

Prove that: ("cosec" theta + cot theta)/("cosec" theta - cot theta) = ("cosec" theta + cot theta )^(2) = 1 + 2 cot^(2) theta + 2 "cosec" theta cot theta .

Prove that (cot theta-cos theta)/(cot theta+cos theta)=(cosec theta-1)/(cosec theta-1)