Home
Class 12
MATHS
The value of the definite integral l = i...

The value of the definite integral `l = int_(0)^(x)xsqrt(1+|cosx|)` dx is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral I = int_(0)^(pi)xsqrt(1+|cosx|) dx is equal to (A) 2sqrt(2)pi (B) sqrt(2) pi (C) 2 pi (D) 4 pi

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

The value of the definite integral int_(0)^((pi)/(3))ln(1+sqrt(3)tan x)dx equals -

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

The value of the definite integral int_(0)^((pi)/(2))(cos^(10)x*sin x}dx, is equal to

Evaluate the definite integrals . int_(0)^(3) |1-x|dx

The value of the definite integral int_0^(pi/2) ((1+sin3x)/(1+2sinx)) dx equals to