Home
Class 12
MATHS
If beta is one of the angles between the...

If `beta` is one of the angles between the normals to the ellipse, `x^2+3y^2=9` at the points `(3 cos theta, sqrt(3) sin theta)" and "(-3 sin theta, sqrt(3) cos theta), theta in (0,(pi)/(2))`, then `(2 cos beta)/(sin 2 theta)` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

cos theta+sqrt(3)sin theta=2

If 3 cos^(2) theta - 2sqrt(3) sin theta cos theta -3 sin^(2) theta = 0 , then theta =

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .