Home
Class 12
MATHS
Statement-1: The function f(x) given by ...

Statement-1: The function f(x) given by `f(x)=sin^(-1){log(x+sqrt(x^(2)+1))}` is an odd function.
Statement:2 The composition of two odd functions is an odd function.

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=sin(log(x+ sqrt(x^2+1))) ​

The function f(x)=sin ( log (x+ sqrt(1+x^(2)))) is

Show that f(x) = log [x + sqrt(1 + x^2)] is a odd function.

Statement I The function f(x) = int_(0)^(x) sqrt(1+t^(2) dt ) is an odd function and g(x)=f'(x) is an even function , then f(x) is an odd function.

The function f(x)= sin | log (x+ sqrt(x^(2) +1)) | is-

The function f(x)= sin | log (x+ sqrt(x^(2) +1)) | is-

The function f(x) = sin| log (x + sqrt(x^2 + 1)) | is :

Statement I The function f(x) = int_(0)^(x) sqrt(1+t^(2) dt ) is an odd function and STATEMENT 2 : g(x)=f'(x) is an even function , then f(x) is an odd function.

Statement I The function f(x) = int_(0)^(x) sqrt(1+t^(2) dt ) is an odd function and STATEMENT 2 : g(x)=f'(x) is an even function , then f(x) is an odd function.

The function f(x)=log(x+sqrt(x^(2)+1)) , is (a) an even function (b) an odd function (c ) a periodic function (d) Neither an even nor an odd function.