Home
Class 11
MATHS
Prove that cos theta + "sin " (270^...

Prove that
cos `theta + "sin " (270^(@) +theta) - "sin "(270^(@) -theta) + "cos " (180^(@) +theta) =0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan theta = -(5)/(12) and theta is not in the fourth quadrant then ( tan (90^(@)+ theta ) - sin(180^(@) - theta ))/( sin (270^(@)- theta ) + " cosec " (360^(@) - theta ))=

cos A + sin (270 ^ (@) + A) -sin (270 ^ (@) - A) + cos (180 ^ (@) + A) = 0

Prove that sin (270^(@)-theta) sin (90^(@)-theta)-cos(270^(@)-theta) cos (90^(@)+theta)+1=0

cos(270^@-theta) =

sin(270^(@)-theta).sin(90^(@)-theta)-cos(270^(@)-theta).cos(90^(@)+theta)=

The value of cos (270^(@) + theta) cos ( 90^(@) -theta) -sin (270^(@) - theta) cos theta is

The value of cos (270^(@) + theta) cos ( 90^(@) -theta) -sin (270^(@) - theta) cos theta is

The value of cos (270^(@) + theta) cos ( 90^(@) -theta) -sin (270^(@) - theta) cos theta is

The value of cos (270^(@) + theta) cos ( 90^(@) -theta) -sin (270^(@) - theta) cos theta is