Home
Class 12
MATHS
If bar(a) is a perpendicular to bar(b) a...

If `bar(a)` is a perpendicular to `bar(b)` and `bar(c), |bar(a)|=2, |bar(b)|=3, |bar(c)|=4` and the angle between `bar(b)` and `bar(c)` is `(2pi)/(3)` then `|[bar(a) bar(b) bar(c)]| = `

Promotional Banner

Similar Questions

Explore conceptually related problems

If (bar(a),bar(b))=(pi)/(6),bar(c) is perpendicular to bar(a) and bar(b),|bar(a)|=3,|bar(b)|=4,|bar(c)|=6 then |[bar(a)bar(b)bar(c)]|

if bar(a) + bar(b) + bar(c ) = bar(0), |bar(a)| = 3, |bar(b)| = 5, |bar(c )| = 7 then find angle between bar(a) , bar(b) .

bar(a),bar(b) and bar( c ) are unit vectors. bar(a).bar(b)=0=bar(a).bar( c ) and the angle between bar(b) and bar( c ) is (pi)/(3) . Then |bar(a)xx bar(b)-bar(a)xx bar( c )|= …………..

bar(a)=2hati+hatj-2hatk and bar(b)=hati+hatj . The vector bar( c ) is such that bar(a)*bar( c )=|bar( c )|,|bar( c )-bar(a)|=2sqrt(2) and the angle between bar(a)xx bar(b) and bar( c ) is 30^(@) then |(bar(a)xx bar(b))xx bar( c )| = …………

Let bar(a), bar(b), bar(c ) be unit vectors, suppose that bar(a). bar(b) = bar(a). bar(c )= 0 and the angle between bar(b) and bar(c ) is pi//6 then show that bar(a)= +-2 (bar(b) xx bar( c))

Let bar(a),bar(b),bar(c) be unit vectors such that bar(a)*bar(b)=bar(a).bar(c)=0 and the angle between bar(b) and bar(c) is (pi)/(6) if bar(a)=n(bar(b)xxbar(c)), then value of n is

If bar(c) = 3 bar(a) - 2 bar(b) then prove that [(bar(a),bar(b),bar(c))] = 0

If |bar(a)|=2,|bar(b)|=4,|bar( c )|=1 and bar(a)+bar(b)=-bar( c ) then bar(a).bar(b)+bar(b).bar( c )+bar( c ).bar(a) = ……………

bar(a) , bar(b) and bar(c) are three vectors such that bar(a) + bar(b) + bar(c) = bar(0) and |bar(a)| =2, |bar(b)| =3, |bar(c)| =5 ,then bar(a) . bar(b) + bar(b) . bar(c) + bar(c) . bar(a) equals

If |bar(a)|=2,|bar(b)|=4,|bar( c )|=1 and bar(a)+bar(b)=-bar( c ) then bar(a).bar(b)+bar(b).bar( c )+bar( c ).bar(a)= ……………