Home
Class 12
MATHS
Prove the following: tan^(-1)x+tan^(-1)(...

Prove the following: `tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1)x+tan^(-1)((2x)/(1-x^2))=tan^(-1)((3x-x^3)/(1-3x^2))

tan^(-1)x+tan^(-1)(2x)/(1-x^(2))=pi+tan^(-1)(3x-x^(3))/(1-3x^(2)),(x>0)

Prove that : tan^(-1)x +tan^(-1). (2x)/(1-x^(2)) = tan^(-1) . (3x-x^(3))/(1-3x^(2)) , |x| lt 1/(sqrt(3))

Prove the following: 2tan^(-1)x=tan^(-1)((2x)/(1-x^(2))),-1ltxlt1

Prove that tan^(-1)x+tan^(-1)((2x)/(1-x^(2)))=tan^(-1)((3x-x^(3))/(1-3x^(2)))|x|lt1/(sqrt(3))

Prove that tan ^(-1) x+tan ^(-1) ((2 x)/(1-x^2))=tan ^(-1)((3 x-x^3)/(1-3 x^2)),|x|lt1/sqrt3

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/(sqrt(3))

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/(sqrt(3))