Home
Class 12
MATHS
If A= int (0)^(pi) (sin x)/(x ^(2))dx, t...

If `A= int _(0)^(pi) (sin x)/(x ^(2))dx,` then `int _(0)^(pi//2) (cos 2 x )/(x) dt` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

If A= int _(0)^(pi) (sin x)/(x ^(2))dx, then int _(0)^(pi//2) (cos 2 x )/(x) dx is equal to:

If A=int_(0)^( pi)(sin x)/(x^(2))dx, then int_(0)^((pi)/(2))(cos(2x))/(x)dx, is equal to:

If A=int_(0)^( pi)(cos x)/((x+2)^(2))dx, then int_(0)^( pi/2)(sin2x)/(x+1)dx is equal to

If A=int_(0)^(pi)(cosx)/(x+2)^(2)dx , then int_(0)^(pi//2)(sin2x)/(x+1)dx is equal to

IfA=int_(0)^( pi)(cos x)/((x+2)^(2))*dx, then int_(0)^((pi)/(2))(sin(2x))/(x+1)*dx is equal to

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi) x sin x. cos^(2) x dx

int_(0)^( pi/2)(sin x)/(1+cos x)dx