Home
Class 12
MATHS
Prove that underset(r = 0) overset (n)(s...

Prove that `underset(r = 0) overset (n)(sum) 3^(r) ""^(n)C_(r) = 4^(n)`

Text Solution

Verified by Experts

The correct Answer is:
`4^(n)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NEW JOYTHI PUBLICATION|Exercise EXERCISE|25 Videos
  • BINOMIAL THEOREM

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|51 Videos
  • APPLICATION OF INTEGRALS

    NEW JOYTHI PUBLICATION|Exercise CONTINUOUS EVALUATION (LAB Work )|1 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|194 Videos

Similar Questions

Explore conceptually related problems

Prove that underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum))""^(n)C_(s) ""^(s)C_(r)=3^(n)-1 .

underset(r=0)overset(n)(sum)sin^(2)""(rpi)/(n) is equal to

Prove that ""^(n)C_r + ""^(n)C_(r-1) = ""^(n+1)C_r

Prove that ""^(25)C_(2) + overset(4)underset(r=0)(sum) ""^(29-r)C_(1)=435

The value of underset(r=0)overset(10)sumr^(10)C_(r),3^(r).(-2)^(10-r) is -

Prove that ""^(24)C_(4)+overset(4)underset(r=0)sum^((28-r))C_(3)=^(29)C_(4)

The number of positive zeros of the polynomial underset(j=0)overset(n)(Sigma)^n C_r(-1)^r x^r is

Prove that sum_(r=0)^n 3^r n Cundersetr = 4^n .

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .

NEW JOYTHI PUBLICATION-BINOMIAL THEOREM-QUESTIONS FROM COMPETITIVE EXAMS
  1. Prove that underset(r = 0) overset (n)(sum) 3^(r) ""^(n)C(r) = 4^(n)

    Text Solution

    |

  2. If T, denotes the r^(th) term in the expansion of [x + 1/x]^(23), then

    Text Solution

    |

  3. If the coefficient of the 2^(nd),3^(rd) and 4^(th) terms in the expans...

    Text Solution

    |

  4. The number of terms in the expansion of (1 + 5sqrt(2)x)^(9) + (1 - 5sq...

    Text Solution

    |

  5. The term independent of x in the expansion of (x + 1/x^())^(6) is

    Text Solution

    |

  6. The coefficient of x^(-9) in the expansion of (x^(2)/2 - 2/x)^(9) is

    Text Solution

    |

  7. If the coefficients of the r^(th) term and the (r + 1)^(th) term in th...

    Text Solution

    |

  8. If (1 + ax)^(n) = 1 + 6x + 27/2 x^(2) + ...... + a^(n)x^(n), then the ...

    Text Solution

    |

  9. If x = (729 + 6(2)(243) + 15(4)(81) + 20(8)(27) + 15(16)(9) + 6(32)3 +...

    Text Solution

    |

  10. The number of terms in the expansion of (a + b + c)^(10) is

    Text Solution

    |

  11. If |x| lt 1, then the coefficient of x^(n) in (1 + 2x + 3x^(2) + 4x^(3...

    Text Solution

    |

  12. The sum of the rational terms in the expansion of (sqrt(2) + 3^(1/5))^...

    Text Solution

    |

  13. if (1 + C(1)/C(0))(1 + C(2)/C(1)) (1 + C(3)/C(2)) ...... (1 + C(n)/C(n...

    Text Solution

    |

  14. In the expansion of (1 + 3x + 2x^(2))^(6) the coefficient of x^(n) is

    Text Solution

    |

  15. If (2x^(2) - x - 1)^(5) = a(0) + a(1)x + a(2)x^(2) + ....... + a(10)x^...

    Text Solution

    |

  16. If (1 + x - 3x^(2))^(10) = a(0) + a(1)x + a(2)x^(2) + ....... + a(20)x...

    Text Solution

    |

  17. (i) What is the second term in the expansion of (1 + x)^(n)? (ii) Wr...

    Text Solution

    |

  18. The coefficient of a^(5)b^(6)c^(7) in the expansion of (bc + ca + ab)^...

    Text Solution

    |

  19. If the expansion of (3sqrt(x)/7 - 5/(2xsqrt(x)))^(13n) contains a term...

    Text Solution

    |

  20. Prove that ""^(10)C(2)+2xx^(10)C(3)+^(10)C(4)=^(12)C(4)

    Text Solution

    |

  21. Let f (x) = [x] , where [x] denotes the greater integer less t...

    Text Solution

    |