Home
Class 12
MATHS
The axis of the parabola y^2 = x is the ...

The axis of the parabola `y^2 = x` is the line

A

`x = 0`

B

`y = 0`

C

`x = 1`

D

`y = 1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE - ELLIPSE|18 Videos
  • CONIC SECTIONS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE - HYPERBOLA|9 Videos
  • CONIC SECTIONS

    NEW JOYTHI PUBLICATION|Exercise EXERCISE - CIRCLE|18 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|194 Videos
  • DIFFERENTIAL EQUATIONS

    NEW JOYTHI PUBLICATION|Exercise OBJECTIVE TYPE QUESTION|19 Videos

Similar Questions

Explore conceptually related problems

If incident ray from point (-2,4) parallel to the axis of the parabola y^(2)=4x strikes the parabola, then find the equation of the reflected ray.

The axis of the parabola x^(2)=-4y is ……. .

(i) Find the points of intersection of the parabola y ^(2) = 8x and the line y = 2x . (ii) Find, using integration, the area enclosed between the line and the parabola.

If incident from point (-1,2) parallel to the axis of the parabola y^2=4x strike the parabola, then find the equation of the reflected ray.

The tangents to the parabola y^2=4x at the points (1, 2) and (4,4) meet on which of the following lines?

Find the area of the region bounded by the parabola y^(2) = x and the line y = x -2

Find the area of the region bounded by the parabola y^(2) = 4x and the line y = 2x .

The axis of a parabola is along the line y=x and the distance of its vertex and focus from the origin are sqrt(2) and 2sqrt(2) , respectively. If vertex and focus both lie in the first quadrant, then the equation of the parabola is (x+y)^2=(x-y-2) (x-y)^2=(x+y-2) (x-y)^2=4(x+y-2) (x-y)^2=8(x+y-2)

AB is a chord of the parabola y^2 = 4ax with its vertex at A. BC is drawn perpendicular to AB meeting the axis at C.The projecton of BC on the axis of the parabola is

The axis of the parabola x^(2)=20y is ........

NEW JOYTHI PUBLICATION-CONIC SECTIONS -EXERCISE - PARABOLA
  1. The vertex of the parabola y^2 + 4x = 0 is

    Text Solution

    |

  2. The focus of the parabola y^2 = 20 x is

    Text Solution

    |

  3. The axis of the parabola y^2 = x is the line

    Text Solution

    |

  4. The latus rectum of the parabola y^2 = 11x is of length

    Text Solution

    |

  5. If (3,0) is the focus and y axis is the tangent at vertex. Then the eq...

    Text Solution

    |

  6. If the parabola y^2 = ax passes through (3,2) then the focus is

    Text Solution

    |

  7. Equation of the parabola with focus (-4,0) and vertex at the origin is

    Text Solution

    |

  8. The equation of the directrix of the parabola x^2 = 28y = 0 is

    Text Solution

    |

  9. The vertex of the parabola y^2 = 4x + 4y is

    Text Solution

    |

  10. The focus of the parabola 4y^2 + 12x - 12y + 39 = 0 is

    Text Solution

    |

  11. Axis of the parabola x^2 - 3y - 6x + 6 = 0 is

    Text Solution

    |

  12. The equation of the parabola with vertex at (0,0) , axis along y axis ...

    Text Solution

    |

  13. The length of latus rectum of the parabola 4y^2 + 2x - 20y + 17 = 0 is

    Text Solution

    |

  14. The length of the latus rectum of the parabola x^2 - 4x - 8y + 12 = 0 ...

    Text Solution

    |

  15. The equation of the directrix of the parabola y^2 + 4y + 4x + 2 = 0 is

    Text Solution

    |

  16. The equation of the parabola with its vertex at (1,1) and focus at (3,...

    Text Solution

    |

  17. Equation of the parabola with focus (3,0) and the directrix x + 3 = 0 ...

    Text Solution

    |

  18. If (0,6) and (0,3) are respectively the vertex and focus of a parabola...

    Text Solution

    |

  19. The line x - y + 2 = 0 touches the parabola y^2 = 8x at the point

    Text Solution

    |