Home
Class 12
MATHS
lim(xto4)(sqrt(1+x)-sqrt(9-x))/(x-4) is ...

`lim_(xto4)(sqrt(1+x)-sqrt(9-x))/(x-4)` is equal to

A

0

B

`oo`

C

`1/5`

D

`1/sqrt(5)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|20 Videos
  • LIMITS AND DERIVATIVES

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|20 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos
  • LINEAR INEQUALITIES

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|38 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)(sqrt(1+x)-1)/x

lim_(xto3)(sqrt(x)-sqrt(3))/(sqrt(x^(2)-9)) is equal to

lim_(xto0)(sin2x)/(1-sqrt(1-x))

lim_(xto1)(sqrt(1-cos2(x-1)))/(x-1) is

lim_(xto0)(sqrt(1+sinx)-sqrt(1-sinx))/tanx

lim_(xto5)(sqrt(x+4)-3)/(x-5)

lim_(xto0)(sqrt(1-x)-1)/x^(2)

lim_(xto0)(sqrt(1+x^(2))-1)/x

lim_(xto5)(sqrt(x-1)-2)/(x-5)

lim_(xto0) ((1-cos2x)(3+cosx))/(xtan4x) is equal to