Home
Class 12
MATHS
lim(kto oo)((1^(3)+2^(3)+3^(3)+ . .. +k^...

`lim_(kto oo)((1^(3)+2^(3)+3^(3)+ . .. +k^(3))/(k^(4)))` is equal to

A

0

B

2

C

`1/3`

D

`1/4`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NEW JOYTHI PUBLICATION|Exercise EXERCISE|47 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|9 Videos
  • LINEAR INEQUALITIES

    NEW JOYTHI PUBLICATION|Exercise QUESTIONS FROM COMPETITIVE EXAMS|38 Videos

Similar Questions

Explore conceptually related problems

lim_(xto oo)(1^(2)+2^(2)+ . .. +n^(2))/(n^3)

Evaluate lim_(ntooo) (1^(3)+2^(3)+3^(3)+...+n^(3))/(sqrt(4n^(8)+1)).

lim_(x to oo )((x^(3))/(3x^(2)-4)-(x^(2))/(3x+2)) is equal to

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n) is equal to

lim_(nto oo)((1^(2))/(1-n^(3))+(2^(2))/(1-n^(3))+ . . . .+(n^(2))/(1-n^(3)))=

lim_(xto oo)(x^(3)+3x^(2)+3x+1)/(2x^(3)-5x^(2)+7)=

lim_(xto0^(-))(1)/(3-2^((1)/(x))) is equal to

If the sum of the first 15 terms of the series ((3)/(4))^(3)+(1(1)/(2))^(3)+(2(1)/(4))^(3)+3^(3)+(3(3)/(4))^(3)+... is equal to 225k, then k is equal to