Home
Class 11
MATHS
एक त्रिभुज , जिसकी भुजाओं के मध्य बि...

एक त्रिभुज , जिसकी भुजाओं के मध्य बिन्दुओ के निर्देशांक (0 ,1 ) , (1 ,1 ) तथा (1 ,0 ) है , के अंत : केंद्र का x -निर्देशांक है :
`(I) 2+sqrt(2)`
`(ii) 2-sqrt(2)`
`(iii) 1+sqrt(2)`
`(iv)1-sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1) x^(2)-(sqrt(2)+1)x+sqrt(2)=0

(iii) (1+i)/(sqrt(2))=sqrt(i)

Show that (1 / sqrt(2) + i / sqrt(2))^10 + (1 / sqrt(2) - i / sqrt(2))^10 = 0 .

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

Prove that : (i) sqrt(i)= (1+i)/(sqrt(2)) (ii) sqrt(-i)=(1- i)/(sqrt(2)) (iii) sqrt(i)+sqrt(-i)=sqrt(2)

lim_(x rarr0)(sqrt(1-x)-sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1+x))

int_(0)^(1/sqrt2)(dx)/(sqrt(1-x^(2)))

Show that ((1)/( sqrt2) + (i)/( sqrt2 )) ^( 10) + ((1)/( sqrt2 ) - (i)/( sqrt2 )) ^( 10 ) = 0

underset(x to 0)"Lt" (sqrt(1-x)-sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1+x))=

Find Lt_(xto0)(sqrt(1+x)-sqrt(1+x^(2)))/(sqrt(1-x^(2))-sqrt(1-x))