Home
Class 12
MATHS
यदि x+y=1, xy=2, तब tan^(-1)x+tan^(-1)y=...

यदि `x+y=1, xy=2,` तब `tan^(-1)x+tan^(-1)y=` यदि तब

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=2. y=3 , then tan^(-1)x+tan^(-1)y=

If x+y=4, xy=1 , then find tan^(-1)x +tan^(-1)y .

If cos ^ (- 1) x + cos ^ (- 1) y = (pi) / (2), tan ^ (- 1) x-tan ^ (- 1) y = 0 then x ^ (2) + xy + y ^ (2) =

If x and y are positive and xy gt 1, then what is tan^(-1)x + tan^(-1)y equal to ?

Assertion (A) : The value of "tan"^(-1)+"tan"^(-1)3=(3pi)/(4) Reason (R) : If x gt 0, y gt , 0, xy gt 1 then tan^(-1)x+tan^(-1)y=pi +tan^(-1)((x+y)/(1-xy))

If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z =

If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z =

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))=

If tan ^(-1) x + tan ^(-1) y + tan ^(-1) z = (pi)/(2), then xy + yz+zx is equal to