Home
Class 12
MATHS
(1-(1)/(x^(2)))e^(x+(1)/(x)) का समाकलन ...

`(1-(1)/(x^(2)))e^(x+(1)/(x))` का समाकलन कीजिये -

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)((e^(2x)+1)/(e^(2x)-1))

The integral int(1+x-(1)/(x))e^(x+(1)/(x))dx is equal to (1)(x-1)e^(x+(1)/(x))+C(2)xe^(x+(1)/(x))+C(3)(x+1)e^(x+(1)/(x))+C(2)-xe^(x+(1)/(x))+C

The primitive of the function f(x)=(1-(1)/(x^(2)))a^(x+(1)/(x)),a>0 is (a^(x+(1)/(x)))/((log)_(e)a) (b) (log_(e)adot a^(x+(1)/(x))(c)(a^(x+(1)/(x)))/(x)(log)_(e)a(d)x(a^(x+(1)/(x)))/((log)_(e)a)

f(x)=((e^(2x)-1)/(e^(2x)+1)) is

f(x)=(e^(2x)-1)/(e^(2x)+1) is

The value of lim_(x rarr0)((1+2x)/(1+3x))^((1)/(x^(2)))*e^((1)/(x)) is e^((5)/(2))b.e^(2)ce^(-2)d.1

The limit of [(1)/(x^(2))+((2)^(x))/(e^(x)-1)-(1)/(e^(x)-1)] as x rarr0

int_(1)^(e) e^(x)((x-1)/(x^(2)))dx=

int_(1)^(2)((x^(2)-1)/(x^(2)))e^(x+(1)/(x))dx=e^((5)/(2))-e^(2)

int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)-(1)/(x))+c (b) x e^(x^(2)-(1)/(x))+c (c) (2x-1) e^(x^(2)-(1)/(x))+c (d) (2x+1) e^(x^(2)-(1)/(x))+c