Home
Class 12
MATHS
If f(x)={:{((e^(1/x)-1)/(e^(1/x)+1)", fo...

If `f(x)={:{((e^(1/x)-1)/(e^(1/x)+1)", for " x !=0),(1", for " x=0):}`, then f is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous at x=0 , where f(x){:{((1)/(1+e^(1/x))", for " x!=0),(k", for " x=0):} , then k=

The function f given by f(x)={((e^(1//x)-1)/(e^(1//x)+1)",","if",x ne 0),(0",","if", x =0):} , is

If f(x)={((1)/(1+e^(1//x))"," ,x ne 0),(0",", x =0):} then f(x) is :

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

If f(x)=(e^(1//x)-1)/(e^(1//x)+1)" for "x ne 0, f(0)=0" then at x=0, f(x) is"

If f(x)={(e^((1)/(x))/(1+e^((1)/(x)))",", x ne0),(0",",x=0):} , then

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

Show that the function f(x) given by f(x)={((e^(1/x)-1)/(e^(1/x)+1), when x!=0), (0, when x=0):} is discontinuous at x=0 .