Home
Class 12
MATHS
Minimum distance between the curve "y^(2...

Minimum distance between the curve `"y^(2)=4x"` and "`x^(2)+y^(2)-12x+31=0`" ,is equal to 1) `sqrt(21)`,2) `sqrt(26)-sqrt(5)`, 3) `sqrt(5)`,4) `sqrt(28)-sqrt(5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(2)x + sqrt(3)y=0 sqrt(5)x - sqrt(2)y=0

(2)/(sqrt(3)+sqrt(5))+(5)/(sqrt(3)-sqrt(5))=x sqrt(3)+y sqrt(5)

((3)/(sqrt(5))x-5)+i2sqrt(5)y=sqrt(2)

Solve for x:sqrt(2x-1)+sqrt(3x-2)=sqrt(4x-3)+sqrt(5x-4)

Solve the equation sqrt(2x-1)+sqrt(3x-2)=sqrt(4x-3)+sqrt(5x-4).

If sqrt(3)x-sqrt(2y)=sqrt(3);sqrt(5)x+sqrt(3)y=sqrt(2) then x and y are

Distance between the lines represented by 9x^(2)-6xy+y^(2)+18x-6y+8=0, is 1(1)/(sqrt(10))2*(2)/(sqrt(10))3*(4)/(sqrt(10)) .sqrt(10)5.(2)/(sqrt(5))

Find common tangent of the two curve y^(2)=4x and x^(2)+y^(2)-6x=0 (a) y=(x)/(3)+3 (b) y=((x)/(sqrt(3))-sqrt(3)) (c) y=(x)/(3)-3 (d) y=((x)/(sqrt(3))+sqrt(3))

Solve for x and ysqrt(2)x-sqrt(3)y=0,sqrt(5)x+sqrt(2)y=0

The distance between the parallel lnes y=2x+4 and 6x-3y-5 is (A) 1 (B) 17/sqrt(3) (C) 7sqrt(5)/15 (D) 3sqrt(5)/15