Home
Class 12
MATHS
An ellipse having foci at (3,1) and (1,1...

An ellipse having foci at (3,1) and (1,1) passes through the point (1,3) .Its eccentricity is:
(A) `sqrt(2)-1` (B) `sqrt(3)-1`
(C) `(1)/(2)(sqrt(2)-1)` (D) `(1)/(2)(sqrt(3)-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

An ellipse having foci (3,1) and (1,1) passes through the point (1,3) has the eccentricity

1-[(1+sqrt(3))/(2)-(1)/(sqrt(3)-1)] is

(-sqrt(3)/2 + sqrt(3))/(1/sqrt(2)-1)=

sqrt((4)/(3))-sqrt((3)/(4))=?(4sqrt(3))/(6) (b) (1)/(2sqrt(3))(c)1(d)-(1)/(2sqrt(3))

(sqrt(2)(2+sqrt(3)))/(sqrt(3)(sqrt(3)+1))-(sqrt(2)(2-sqrt(3)))/(sqrt(3)(sqrt(3)-1))

If the major axis of an ellipse is three xx the minor axis,then its eccentricity is equal to (1)/(3) b.(1)/(sqrt(3)) c.(1)/(sqrt(2))d.(2sqrt(2))/(3) e.(3)/(3sqrt(2))

x=(1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+2)=

Simplify : (1)/(sqrt(3)+sqrt(2))-(1)/(sqrt(3)-sqrt(2))+(2)/(sqrt(2)+1)

The value of sin(1/4sin^(-1)(sqrt(63))/8) is 1/(sqrt(2)) (b) 1/(sqrt(3)) (c) 1/(2sqrt(2)) (d) 1/(3sqrt(3))

((2+sqrt(3))/2)/(1+(sqrt(3)+1)/2) + ((2-sqrt(3))/2)/(1-((sqrt(3)-1)/2))