Home
Class 12
MATHS
tan^(-1)(1)/(4)+tan^(-1)(2)/(9)=tan^(-1)...

`tan^(-1)(1)/(4)+tan^(-1)(2)/(9)=tan^(-1)(1)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that ,,tan^(-1)(1)/(2)+tan^(-1)(2)/(11)=tan^(-1)(3)/(4)

Prove that: tan^(-1)(1)/(7)+tan^(-1)(1)/(13)=tan^(-1)(2)/(9)tan^(-1)+tan^(-1)(1)/(5)+tan^(-1)(1)/(8)=(pi)/(4)tan^(-1)(3)/(4)+tan^(-1)(3)/(5)-tan^(-1)(8)/(19)=(pi)/(4)tan^(-1)(1)/(5)+tan^(-1)(1)/(7)+tan^(-1)(1)/(3)+tan^(-1)(1)/(8)=(pi)/(4)cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)(1)/(13)

The value of tan^(-1)((1)/(3))+tan^(-1)((2)/(9))+tan^(-1)((4)/(33))+tan^(-1)((8)/(129))+...n terms is:

prove that tan^(-1)((1)/(7))+tan^(-1)((1)/(13))=tan^(-1)((2)/(9))

Prove that tan^(-1)((1)/(7))+tan^(-1)((1)/(13))=tan^(-1)((2)/(9))

Prove the following: 4tan^(-1)(1)/(5)-tan^(-1)(1)/(70)+tan^(-1)(1)/(99)=(pi)/(4)2tan^(-1)(1)/(5)+sec^(-1)(5sqrt(2))/(7)+2tan^(-1)(1)/(8)=(pi)/(4)

Prove that : tan^(-1)((1)/(2))+tan^(-1)((1)/(5))+tan^(-1)((1)/(8))=(pi)/(4)

2tan^(-1)((1)/(5))+tan^(-1)((1)/(8))= tan^(-1)((4)/(7))

Find the sum of the series tan^(-1)((1)/(2))+tan^(-1)((1)/(2))+tan^(-1)((1)/(18))+tan^(-1)((1)/(32))+

tan^(-1)(1/7)+tan^(-1)(1/9)+tan^(-1)(1/8)