Home
Class 11
MATHS
If A=(cos alpha,sin alpha,0), B=(cos bet...

If `A=(cos alpha,sin alpha,0), B=(cos beta,sin beta,0),C=(cos gamma,sin gamma,0)` are vertices of `Delta ABC` and `cos alpha+cos beta+cos gamma=3a, sin alpha+sin beta+sin gamma=3b` then orthocentre is

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos alpha + cos beta + cos gamma = 3 then sin alpha + sin beta + sin gamma =

If cos alpha+cos beta+cos gamma=0 and also sin alpha+sin beta+sin gamma=0 then prove that

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)

Let A = (cos alpha, sin alpha), B = (cos beta , sin beta), C = (cos gamma, sin gamma) . If origin is the orthocentre of the Delta ABC , then the value of sum cos (2 alpha - beta - gamma)= ____________

if cos alpha+cos beta+cos gamma=0=sin alpha+sin beta+sin gamma then prove that cos2 alpha+cos2 beta+cos2 gamma=sin2 alpha+sin2 beta+sin2 gamma=0

If cos (alpha + beta) sin (gamma + delta) = cos (alpha - beta) sin (gamma - delta) then:

cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)=-(3)/(2), prove that cos alpha+cos beta+cos gamma=sin alpha+sin beta+sin gamma=0

cos(alpha-beta)+cos(beta+gamma)+cos(gamma-alpha)=-(3)/(2) prove that: cos alpha+cos beta+cos gamma=sin alpha+sin beta+sin gamma=0

If origin is the orthocentre of the triangle with vertices A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then cos(2 alpha-beta-gamma)+cos(2 beta-gamma-alpha)+cos(2 gamma-alpha-beta)=

P(cos alpha,sin alpha),Q(cos beta,sin beta),R(cos gamma,sin gamma) are vertices of triangle whose orthocenter is (0,0) then the value of cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha) is